

Why Full-Duplex mmWave Systems?

- Higher spectral efficiency and network throughput.
- Lower latency, especially in multi-hop networks.
- Unlocks scheduling opportunities.
- Efficient medium access control.
- Applications in wireless backhauling, sensing, security, spectrum sharing, feedback, and more.

How to unlock full-duplex capability at mmWave?

Key Metrics of a Full-Duplex System

$SINR_{tx}(\theta_{tx}) = SINR_{rx}(\theta_{tx}, \theta_{rx}) = 1$	$ \frac{SNR_{\mathrm{tx}}(\theta_{\mathrm{tx}})}{1 + INR_{\mathrm{tx}}} \\ SNR_{\mathrm{rx}}(\theta_{\mathrm{rx}}) \\ + INR_{\mathrm{rx}}(\theta_{\mathrm{tx}}, \theta_{\mathrm{rx}}) $
$R_{\rm sum} = \underline{\log_2(1 + SINR_{\rm tx}(\theta_{\rm tx}))}$	$+\underline{\log_2(1 + SINR_{rx}(\theta_{tx}, \theta_{rx}))}$
downlink rate	uplink rate
How to choose beam steering directions $(\theta_{tx}, \theta_{rx})$?	

Experiments with 60 GHz Phased Arrays

STEER+: Robust Beam Refinement for

